Simulated Pseudo Maximum Likelihood Identification of Nonlinear Models
نویسنده
چکیده
Nonlinear stochastic parametric models are widely used in various fields. However, for these models, the problem of maximum likelihood identification is very challenging due to the intractability of the likelihood function. Recently, several methods have been developed to approximate the analytically intractable likelihood function and compute either the maximum likelihood or a Bayesian estimator. These methods, albeit asymptotically optimal, are computationally expensive. In this contribution, we present a simulation-based pseudo likelihood estimator for nonlinear stochastic models. It relies only on the first two moments of the model, which are easy to approximate using Monte-Carlo simulations on the model. The resulting estimator is consistent and asymptotically normal. We show that the pseudo maximum likelihood estimator, based on a multivariate normal family, solves a prediction error minimization problem using a parameterized norm and an implicit linear predictor. In the light of this interpretation, we compare with the predictor defined by an ensemble Kalman filter. Although not identical, simulations indicate a close relationship. The performance of the simulated pseudo maximum likelihood method is illustrated in three examples. They include a challenging state-space model of dimension 100 with one output and 2 unknown parameters, as well as an application-motivated model with 5 states, 2 outputs and 5 unknown parameters.
منابع مشابه
A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models
The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based...
متن کاملMaximum Simulated Likelihood Estimation of Random Effects Dynamic Probit Models with Autocorrelated Errors
This paper investigates the use of Maximum Simulated Likelihood estimation for random effects dynamic probit models with autocorrelated errors. It presents a new Stata command, redpace, for this estimator and illustrates its usage. The paper also compares the use of pseudo-random numbers and Halton sequences of quasi-random numbers for the MSL estimation of these models.
متن کاملComparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models
The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based...
متن کاملEstimation of Hidden Markov Models with Nonparametric Simulated Maximum Likelihood
We propose a nonparametric simulated maximum likelihood estimation (NPSMLE) with built-in nonlinear ltering. By recursively approximating the unknown conditional densities, our method enables a maximum likelihood estimation of general dynamic models with latent variables including time-inhomogeneous and non-stationary processes. We establish the asymptotic properties of the NPSMLEs for hidden...
متن کاملEstimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables
The Rasch family of models considered in this paper includes models for polytomous items and multiple correlated latent traits, as well as for dichotomous items and a single latent variable. An R package is described that computes estimates of parameters and robust standard errors of a class of log-linear-by-linear association (LLLA) models, which are derived from a Rasch family of models. The ...
متن کامل